Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sulfurization of Cu-In electrodeposited precursors for CuInS2-based solar cells

Identifieur interne : 002446 ( Main/Repository ); précédent : 002445; suivant : 002447

Sulfurization of Cu-In electrodeposited precursors for CuInS2-based solar cells

Auteurs : RBID : Pascal:11-0266014

Descripteurs français

English descriptors

Abstract

Cu-In electrodeposited layers were annealed using rapid thermal processing (RTP) in a reactive atmosphere containing sulfur vapors. The CuInS2 formation mechanism during sulfurization of electrodeposited precursors proceeds mainly through direct sulfurization of the metallic Cu-In alloy, forming spinel CuIn5S8 and chalcopyrite CuInS2 ternary phases. During the heating step, the Cu-In metallic alloy gets richer in copper as the temperature increases and transforms from CuIn2 to Cu11In9, then Cu16In9 and finally to Cu7In3. The use of rapidly cooled samples stopped after different durations of the process along with ex-situ XRD analysis enabled us to differentiate the Cu16In9 and Cu7In3 phases. Finally, the efficiency of the solar cells made with the two-step electrodeposition and RTP low-cost process reaches 11% (active area 0.421 cm2), which is close to the results obtained for cells made with PVD precursors.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0266014

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Sulfurization of Cu-In electrodeposited precursors for CuInS
<sub>2</sub>
-based solar cells</title>
<author>
<name sortKey="Broussillou, C" uniqKey="Broussillou C">C. Broussillou</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>MINES ParisTech, Centre des Matériaux, CNRS UMR 7633, BP 87</s1>
<s2>91003 Evry</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Evry</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>NEXCIS Photovoltaic Technology, 190 Avenue Célestin Coq</s1>
<s2>13106 Rousset</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Rousset</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Andrieux, M" uniqKey="Andrieux M">M. Andrieux</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Univ. Paris Sud 11, LEMHE-ICMMO, CNRS UMR 8182, Bât. 410</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Orsay</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Herbst Ghysel, M" uniqKey="Herbst Ghysel M">M. Herbst-Ghysel</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Univ. Paris Sud 11, LEMHE-ICMMO, CNRS UMR 8182, Bât. 410</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Orsay</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jeandin, M" uniqKey="Jeandin M">M. Jeandin</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>MINES ParisTech, Centre des Matériaux, CNRS UMR 7633, BP 87</s1>
<s2>91003 Evry</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Evry</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jaime Ferrer, J S" uniqKey="Jaime Ferrer J">J. S. Jaime-Ferrer</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>NEXCIS Photovoltaic Technology, 190 Avenue Célestin Coq</s1>
<s2>13106 Rousset</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Rousset</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bodnar, S" uniqKey="Bodnar S">S. Bodnar</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>NEXCIS Photovoltaic Technology, 190 Avenue Célestin Coq</s1>
<s2>13106 Rousset</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Rousset</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Morin, E" uniqKey="Morin E">E. Morin</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>NEXCIS Photovoltaic Technology, 190 Avenue Célestin Coq</s1>
<s2>13106 Rousset</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Rousset</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0266014</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0266014 INIST</idno>
<idno type="RBID">Pascal:11-0266014</idno>
<idno type="wicri:Area/Main/Corpus">003023</idno>
<idno type="wicri:Area/Main/Repository">002446</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing</term>
<term>Chalcopyrite</term>
<term>Copper</term>
<term>Copper sulfide</term>
<term>Cost lowering</term>
<term>Electrodeposition</term>
<term>Formation mechanism</term>
<term>Forming</term>
<term>Heating</term>
<term>Indium sulfide</term>
<term>Performance evaluation</term>
<term>Physical vapor deposition</term>
<term>Rapid thermal processing</term>
<term>Solar cell</term>
<term>Spinels</term>
<term>Sulfur</term>
<term>Sulfurization</term>
<term>Ternary compound</term>
<term>X ray diffraction</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Sulfuration</term>
<term>Dépôt électrolytique</term>
<term>Cellule solaire</term>
<term>Recuit</term>
<term>Traitement thermique rapide</term>
<term>Mécanisme formation</term>
<term>Formage</term>
<term>Chauffage</term>
<term>Diffraction RX</term>
<term>Evaluation performance</term>
<term>Diminution coût</term>
<term>Dépôt physique phase vapeur</term>
<term>Cuivre</term>
<term>Composé ternaire</term>
<term>Sulfure de cuivre</term>
<term>Sulfure d'indium</term>
<term>Soufre</term>
<term>Spinelles</term>
<term>Chalcopyrite</term>
<term>CuInS2</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Chauffage</term>
<term>Cuivre</term>
<term>Soufre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cu-In electrodeposited layers were annealed using rapid thermal processing (RTP) in a reactive atmosphere containing sulfur vapors. The CuInS
<sub>2</sub>
formation mechanism during sulfurization of electrodeposited precursors proceeds mainly through direct sulfurization of the metallic Cu-In alloy, forming spinel CuIn
<sub>5</sub>
S
<sub>8</sub>
and chalcopyrite CuInS
<sub>2</sub>
ternary phases. During the heating step, the Cu-In metallic alloy gets richer in copper as the temperature increases and transforms from CuIn
<sub>2</sub>
to Cu
<sub>11</sub>
In
<sub>9</sub>
, then Cu
<sub>16</sub>
In
<sub>9</sub>
and finally to Cu
<sub>7</sub>
In
<sub>3</sub>
. The use of rapidly cooled samples stopped after different durations of the process along with ex-situ XRD analysis enabled us to differentiate the Cu
<sub>16</sub>
In
<sub>9</sub>
and Cu
<sub>7</sub>
In
<sub>3</sub>
phases. Finally, the efficiency of the solar cells made with the two-step electrodeposition and RTP low-cost process reaches 11% (active area 0.421 cm
<sup>2</sup>
), which is close to the results obtained for cells made with PVD precursors.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>95</s2>
</fA05>
<fA06>
<s3>SUP1</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Sulfurization of Cu-In electrodeposited precursors for CuInS
<sub>2</sub>
-based solar cells</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Thin Film Photovoltaic Applications (TFPA)</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>BROUSSILLOU (C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ANDRIEUX (M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HERBST-GHYSEL (M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>JEANDIN (M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>JAIME-FERRER (J. S.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BODNAR (S.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>MORIN (E.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>ESCOUBAS (Ludovic)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>CHOPRA (Kasturi)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>JEANNEROT (Luc)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>CHARRIER (Véronique)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>MINES ParisTech, Centre des Matériaux, CNRS UMR 7633, BP 87</s1>
<s2>91003 Evry</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Univ. Paris Sud 11, LEMHE-ICMMO, CNRS UMR 8182, Bât. 410</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>NEXCIS Photovoltaic Technology, 190 Avenue Célestin Coq</s1>
<s2>13106 Rousset</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Aix-Marseille University, Institut des Matériaux Microélectronique Nanosciences de Provence, IM2NP-UMR CNRS 6242</s1>
<s2>Marseille-Toulon</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>POPsud</s1>
<s2>Marseille</s2>
<s3>FRA</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="02" i2="1">
<s1>Université Paul Cézanne Aix Marseille III</s1>
<s3>FRA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>S13-S17</s2>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000191534860030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>9 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0266014</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Cu-In electrodeposited layers were annealed using rapid thermal processing (RTP) in a reactive atmosphere containing sulfur vapors. The CuInS
<sub>2</sub>
formation mechanism during sulfurization of electrodeposited precursors proceeds mainly through direct sulfurization of the metallic Cu-In alloy, forming spinel CuIn
<sub>5</sub>
S
<sub>8</sub>
and chalcopyrite CuInS
<sub>2</sub>
ternary phases. During the heating step, the Cu-In metallic alloy gets richer in copper as the temperature increases and transforms from CuIn
<sub>2</sub>
to Cu
<sub>11</sub>
In
<sub>9</sub>
, then Cu
<sub>16</sub>
In
<sub>9</sub>
and finally to Cu
<sub>7</sub>
In
<sub>3</sub>
. The use of rapidly cooled samples stopped after different durations of the process along with ex-situ XRD analysis enabled us to differentiate the Cu
<sub>16</sub>
In
<sub>9</sub>
and Cu
<sub>7</sub>
In
<sub>3</sub>
phases. Finally, the efficiency of the solar cells made with the two-step electrodeposition and RTP low-cost process reaches 11% (active area 0.421 cm
<sup>2</sup>
), which is close to the results obtained for cells made with PVD precursors.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Sulfuration</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Sulfurization</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Sulfurización</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Dépôt électrolytique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Electrodeposition</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Depósito electrolítico</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Recuit</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Annealing</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Recocido</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Traitement thermique rapide</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Rapid thermal processing</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Mécanisme formation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Formation mechanism</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Mecanismo formacion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Formage</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Forming</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Conformado</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Chauffage</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Heating</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Calefacción</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Diffraction RX</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>X ray diffraction</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Difracción RX</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Diminution coût</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Cost lowering</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Reducción costes</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Dépôt physique phase vapeur</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Physical vapor deposition</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Deposición física fase vapor</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Cobre</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Sulfure de cuivre</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Copper sulfide</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Cobre sulfuro</s0>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Sulfure d'indium</s0>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Indium sulfide</s0>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Indio sulfuro</s0>
<s5>25</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Soufre</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>26</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Sulfur</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>26</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Azufre</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>26</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Spinelles</s0>
<s5>27</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Spinels</s0>
<s5>27</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Espinelas</s0>
<s5>27</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Chalcopyrite</s0>
<s5>28</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Chalcopyrite</s0>
<s5>28</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Calcopirita</s0>
<s5>28</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>CuInS2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>178</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Photovoltaic Technical Conference Thin Film 2010 (PVTC 2010)</s1>
<s2>1</s2>
<s3>Aix-en-Provence FRA</s3>
<s4>2010-05-27</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002446 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002446 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0266014
   |texte=   Sulfurization of Cu-In electrodeposited precursors for CuInS2-based solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024